REAL ANALYSIS TOPIC X - [0, 1] **IS CONNECTED**

PAUL L. BAILEY

Definition 1. Let X be a topological space. We say that X is *connected* if there do not exist nonempty disjoint open sets whose union is X.

Let I = [0, 1] denote the closed unit interval in \mathbb{R} , endowed with the topology derived from the metric inherited as a subset of \mathbb{R} .

Proposition 1. The topological space I is connected.

Proof. Suppose, by way of contradiction, that there exist sets $U, V \subset I$ which are nonempty and open in I, such that $U \cup V = I$ and $U \cap V = \emptyset$. Without loss of generality, we may assume that $0 \in U$.

An open ball in I around 0 is of the form [0, r) for some r > 0. Since U is open, there exists an open neighborhood of 0 of the form [0, r) such that $[0, r) \subset U$.

Let $z = \sup\{x \in I \mid [0, x) \subset I\}$. Clearly, $z \ge r > 0$.

If z = 1, then $[0, 1) \subset U$, so either $V = \emptyset$ or $V = \{1\}$. But V is nonempty and open by assumption, and $\{1\}$ is not open, so this cannot be the case. Thus z < 1.

If $z \in U$, then z is an interior point of the open set U, so $(z - \delta, z + \delta) \subset U$ for some $\delta > 0$; but in that case, $[0, z + \delta) \subset U$, contradicting our definition of z as a supremum. Thus $z \notin U$. Hence $z \in V$.

Since V is open, z is an interior point of V, so $(z - \delta, z + \delta) \subset V$, for some $\delta > 0$. But then $(z - \delta, z) \subset U \cap V$, contradicting that U and V are disjoint. This contradiction completes the proof.

DEPARTMENT OF MATHEMATICS, BASIS SCOTTSDALE *E-mail address:* paul.bailey@basised.com